Tragedia Nuclear en Chernobyl:Explosión de una Usina Atómica

 Tragedia Nuclear en Chernobyl
La Explosión de una Usina Atómica

El pasado 26 de abril se han cumplido 34 años de la explosión e incendio del reactor número 4 de la central nuclear de Chernobyl.

El accidente, ocurrido a las 1:23 horas de la mañana, produjo la liberación de enormes cantidades de material radiactivo a la atmósfera, contaminando significativamente grandes extensiones de Bielorrusia, la Federación Rusa y Ucrania, afectando seriamente a la población local.

El accidente se inició al disparar los operadores la turbina para llevar a cabo el experimento que pretendían.

El estado del reactor en ese momento, con un caudal de refrigeración superior al normal y los venenos neutrónicos extraídos en mucha mayor proporción a lo permitido, hicieron que el reactor estuviera en régimen de supermoderación, con lo que el transitorio originado provocó un brusco aumento de radioactividad que no pudo ser compensada.

Una vez producido el transitorio, debería haber funcionado el sistema automático de protección del reactor, parte del cual estaba desconectado.

La explosión que siguió a continuación provocó la destrucción física del reactor y la cubierta.

Para dar idea de la gran liberación de energía, se dirá que partículas de plutonio alcanzaron los 2 km de altitud.

Victima de ChernobylEn los diez años transcurridos se han realizado considerables esfuerzos para evaluar y mitigar los efectos de un accidente que tuvo su origen en una serie de fallos humanos, de diseño y políticos, que nunca debieron haber ocurrido.

Se resumen a continuación los principales acontecimientos previos y posteriores al accidente, recopilados de investigaciones recién concluidas

Niño victima de Chernobyl

¿Qué sucedió exactamente en Chernobyl?

¿Por qué ocurrió?

¿Qué impacto ecológico causó?

El accidente ocurrido en la madrugada del 26 de abril de 1986 consistió, básicamente, en una conjunción de fallas humanas y de diseño de la planta.

Se originó en una serie de pruebas que, con el fin de mejorar la seguridad, se iniciaron en el reactor.

La idea era verificar que la inercia de una turbina era suficiente, si se producía una interrupción abrupta de la alimentación eléctrica, para que los generadores mantuvieran en funcionamiento al sistema de refrigeración hasta que arrancasen los generadores diesel de emergencia.

En los reactores "occidentales" esta eventualidad está prevista en el diseño del reactor, admitiéndose una demora de hasta 30 segundos de los diesel que deben cubrir la falla.

Por aquí, este tipo de pruebas está prohibido o se encuentra estrictamente reglamentado.

En la unidad 4 de la Central de Chernobyl, se intentó ese experimento después de haberlo realizado, con éxito, en la unidad número 3.

Para llevarlo a cabo, era necesario llevar el reactor a un 30 % de su potencia de funcionamiento (3200 MW térmicos).

El 25 de abril, a la 01:00 se comenzó a bajar potencia y a las 13:00 hs el reactor ya estaba funcionando a un 50 % de potencia, cuando se desconectó una de las dos turbinas.

En ese punto, las autoridades del sistema pidieron que se lo mantuviera por necesidades de la red eléctrica.

La central quedó esperando la autorización para iniciar la experiencia, cosa que ocurrió a las 23:00.

A las 23:10 se bajó la potencia del reactor.

Una Suma de Errores!

Por un error de operación (PRIMER ERROR) la potencia se bajó a un 1 %, provocando la condensación del vapor presente en el núcleo. Como el agua absorbe más neutrones que el vapor, esto introdujo reactividad negativa.

Si la "reactividad" es cero la reacción en el núcleo se autosostiene y la población neutrónica se mantiene constante; entonces, se dice que el reactor está crítico.

Si es positiva la población neutrónica crece y, por lo tanto, la potencia del núcleo aumenta. Si es negativa la población neutrónica disminuye y el reactor tiende a apagarse.

Adicionalmente - al bajar la potencia del reactor - la concentración de Xe131 subió, introduciendo un fuerte aporte negativo adicional de reactividad. Es un "producto de fisión" que actúa como gran absorbente de neutrones.

Esta situación produjo preocupación en los operadores, ya que el reactor se apagaba inexorablemente.

Entonces, decidieron extraer todas las barras de control del núcleo, algo que no estaba permitido por los manuales de operación (SEGUNDO ERROR).

Fue posible porque el diseño no contemplaba el enclavamiento del mecanismo.

Con el reactor operando prácticamente sin barras, se alcanzó un 7 % de potencia, en un estado de alta inestabilidad.

(Las barras de control absorben los neutrones excedentes, manteniendo al reactor estable o crítico. Su remoción introduce reactividad positiva).

El reactor poseía un sistema automático de control de caudal por los canales.

Al trabajar a tan baja potencia, el sistema hubiese tendido a la parada.

Para evitarlo, los operadores desconectaron el sistema de parada por caudal e iniciaron el control manual del mismo (TERCER ERROR). Nuevamente, la falta de enclavamientos permitió esta maniobra.

En ese momento, todo el refrigerante estaba condensado en el núcleo. A las 1:23:04 del 26 de abril de 1986, se decidió desconectar la turbina de la línea de vapor, para iniciar la prueba.

Para poder hacerlo, los operadores tuvieron que hacer lo propio con otros sistemas de emergencia (CUARTO ERROR).

Al desconectar la turbina, las bombas comenzaron a alimentarse por la tensión provista por el generador durante su frenado inercial.

La tensión fue menor y las bombas trabajaron a menor velocidad. Entonces, se formaron burbujas de vapor en el núcleo, insertando una altísima reactividad y, por lo tanto, un brusco incremento de potencia.

A la 1:23:40 el operador quiso introducir las barras de corte.

Pero, ya era tarde! Para ese entonces, el reactor ya estaba a varias veces su potencia nominal.

La presión en los tubos subió rápidamente, provocando su ruptura. Estallaron!!!, levantando el blindaje de la parte superior del núcleo.

Algunos fragmentos de combustible y grafito en llamas fueron lanzados hacia afuera, cayendo sobre el techo de turbinas adyacentes, causando una treintena de incendios.

Para las 5:00, los bomberos habían apagado a la mayoría de ellos, con un terrible costo en vidas por la sobreexposición.

Luego de fracasar en su intento de inundar al núcleo, los soviéticos decidieron cubrirlo con materiales absorbentes de neutrones y rayos gamma (plomo, sustancias boradas, arena, arcilla, dolomita).

Del 28 de abril al 2 de mayo, se dedicaron a hacerlo desde helicópteros.

Cavaron un túnel por debajo de la central, para introducir un piso de hormigón y evitar la contaminación de las napas de agua subterránea.

Así consiguieron que cesaran las grandes emisiones de material radiactivo.

El reactor fue finalmente recubierto con un "sarcófago" de hormigón, que provee un blindaje suficiente como para trabajar en los alrededores.

Para evacuar el calor residual, se instalaron ventiladores y filtros.

La consecuencia inmediata del accidentes fue la muerte de 31 personas, 2 por la explosión y 29 a causa de la radiación.

Todas formaban parte del personal de la planta.

Muchas hectáreas de campo quedaron inutilizadas por la deposición de material radiactivo.

Teniendo en cuenta las dosis recibidas por los 135.000 habitantes de los alrededores, los modelos matemáticos predicen un incremento de menos del uno por ciento sobre la tasa normal de cáncer (20 %) en el área.

• CONCLUSION

En este siglo el hombre ha descubierto una nueva fuente de energía: la nuclear.

Todos los países se han esforzado en contribuir a su aplicación pacífica y, como consecuencia de este trabajo conjunto, se han desarrollado las centrales nucleares para la producción de energía eléctrica.

Gracias a este esfuerzo de colaboración que se inició en los años cincuenta, la humanidad se ha encontrado con que dispone ahora de una nueva fuente de energía prácticamente ilimitada que le permite hacer frente a los problemas que están planteando los combustibles convencionales, reduciendo su utilización a los fines para los que resultan insustituibles y evitando su consumo en la producción de energía eléctrica.

Durante este tiempo, se ha podido demostrar que las centrales nucleares producen energía eléctrica de una forma fiable, segura y económica.

Las investigaciones para lograr la energía de fusión se vienen realizando en los países más avanzados del mundo, pero aún no se la puede considerar una solución inmediata para el problema energético.

Con lo expuesto anteriormente, podemos decir que la producción de energía atómica ha "madurado" técnica, científicamente y en lo que se refiere a la seguridad para los operarios de estas centrales, para el resto de las personas y para el medio ambiente, lo suficiente como para que sea posible usarla en reemplazo de las energías generadas por la quema de combustibles fósiles. Esto seria una gran ayuda para nuestro planeta.

También creemos que hemos despejado la mayoría de las dudas con respecto a los "temibles" residuos producidos por las centrales nucleares, aunque no dejan de ser un problema hasta que estemos técnicamente avanzados como para poder reaprovecharlos o librarnos definitivamente de ellos.

• ►El Peligro Atómico:

La alerta definitiva sobrevino el 26 de abril de 1986, cuando en Ucrania una fuga en un reactor de la central nuclear de Chernobyl, a unos 100 Km. de Kiev, provocó la expulsión al exterior de ocho toneladas de combustible radiactivo.

Se calcula que, por contaminación directa o por consecuencias indirectas de la catástrofe, murieron 20.000 personas y cerca de 300.000 quedaron aquejadas por diversos tipos de cáncer.

Después de Chernobyl cobró fuerza la necesidad de desarrollar fuentes de energía "limpias" (hidroeléctrica, solar, geotérmica y eólica).

La búsqueda de fuentes energéticas alternativas también parte de las críticas al uso irracional del carbón, el gas y el petróleo, que no son recursos renovables.

En efecto, enormes cantidades de esos recursos, que han tardado en formarse miles de años, se consumen en pocos minutos.

Así se liberan a la atmósfera ingentes cantidades de carbono, que a la naturaleza le llevó centenares de millones de años almacenar en la corteza terrestre.

Por otra parte, las emisiones de gases generan el "efecto invernadero", que ocasiona cambios climáticos catastróficos.

PARA SABER MAS...

En el libro de Adriana Patricia Cabrera, llamado "Calentamiento Global", explica lo siguiente respecto a Chernobyl y los cuidados de los recatores nucleares:

"...Después de treinta años de servicio, las centrales nucleares deben ser desmanteladas por completo; los elementos que pudieran volver a utilizarse tienen que ser descontaminados, y es preciso enterrar la obra bajo una gruesa capa de concreto.

Prolongar este plazo implica tener latente una peligrosa bomba atómica, como la que explotó en Chernobyl (Ucrania) el 26 de abril de 1986, causando la peor catástrofe nuclear conocida hasta la fecha.

Según Zhores Medvedev, investigador primario del Instituto Nacional para Investigaciones Médicas en Londres y autor de El legado de Chernobyl, hay casi ochocientos sitios temporales y primitivos de desechos nucleares alrededor de Chernobyl.

La radiactividad allí continúa contaminando el agua subterránea.

El reactor nuclear, ahora cubierto por un "sarcófago" de concreto, contiene todavía 700 kilos de plutonio, 201 toneladas de uranio y altos niveles de cesio, estroncio y otros radionucleidos letales en una condición muy inestable.

No se espera que el sarcófago dure treinta años.

Se acepta que será necesario construir una estructura nueva y más pesada para encapsularlo, o que habrá que eliminar y desmantelar el reactor destruido, pieza por pieza, utilizando robots especiales, para luego enterrar apropiadamente los restos.

Nadie sabe cómo hacerlo, cuánto se tardará ni cuánto costará.

El otro problema, aún sin solución, es qué hacer con los desechos radiactivos.

Por su alta temperatura y peligrosidad, los residuos nucleares deben permanecer entre veinte y treinta años enfriándose en piletas de agua en las centrales nucleares.

Existe la posibilidad de procesar los residuos y convertirlos en plutonio, el elemento más peligroso conocido y generado por el hombre.

Pero una vez reprocesados, enfriados o vitrificados, la radiactividad de estos materiales se sigue liberando, y todavía no se ha encontrado un lugar de almacenamiento que sea lo suficientemente seguro.

Si se tiene en cuenta que a los treinta años de uso, una planta desmantelada genera la misma cantidad de residuos radiactivos que produjo durante toda su vida, la central misma es una montaña de basura, con destino incierto.

Los residuos nucleares se clasifican según su peligrosidad en de baja, mediana y alta actividad.

Los de baja actividad son los que se producen en las etapas en las que el uranio se convierte en combustible apto para una central nuclear. De este proceso se desprende el fatal iodo 131.

Los de mediana actividad se producen en el tratamiento del combustible nuclear y generan radiación alfa.

Esta basura es casi eterna: el americio 243 vive ocho mil años; el plutonio, veiticuatro mil cuatrocientos años; y el neptunio 237 llega a vivir dos millones de años."

Fuente Consultada:
Calentamiento Global de Adriana P. Cabrera Edit. longseller

Temas Relacionados

Tecnologías Para Predecir Desastres Naturales

Lago contaminado con Gas

Desastres Diplomáticos en Washington

Huracan Katrina: Consecuencias


La Historia del Mundo en Imágenes


Entradas Relacionadas Al Tema

Subir

Usamos cookies para darte una mejor experiencia de navegación. Si continuas navegando, aceptas el uso de las cookies Más información...