El Hombre de Vitruvio
La Divina Proporción, Cuadratura Humana

>Inicio >Temas Sugeridos

Conceptos Para Comprender Mejor: El Código Da Vinci

 

 

 

 

Anécdotas Matemáticas

Fibonacci

Cuadrados Mágicos Juegos Matemáticos

Pacioli y La Divina Proporción

Un Problema Muy Difícil

Vesica Picsis

    EL HOMBRE DE VITRUVIO   

En su Studio (Real Academia de Venecia), también conocido como El hombre de Vitruvio, Leonardo da Vinci realiza una visión del hombre como centro del Universo al quedar inscrito en un círculo y un cuadrado. El cuadrado es la base de lo clásico: el módulo del cuadrado se emplea en toda la arquitectura clásica, el uso del ángulo de 90º y la simetría son bases grecolatinas de la arquitectura. En él se realiza un estudio anatómico buscando la proporcionalidad del cuerpo humano, el canon clásico o ideal de belleza.

Sigue los estudios del arquitecto Vitruvio (Marcus Vitruvius Pollio) arquitecto romano del siglo I a.c. a quien Julio Cesar encarga la construcción de máquinas de guerra. En época de Augusto escribió los diez tomos de su obra De architectura, que trata de la construcción hidráulica, de cuadrantes solares, de mecánica y de sus aplicaciones en arquitectura civil e ingeniería militar. Vitrubio tuvo escasa influencia en su época pero no así en el renacimiento ya que fue el punto de partida de sus intentos y la justificación de sus teorías.

Su obra fue publicada en Roma en 1486 realizándose numerosas ediciones como la de Fra Giocondo en 1511, Venecia o la de Cesare Cesarino en 1521, Milán, dedicada a Francisco I. Parece indudable que Leonardo se inspiró en el arquitecto romano.

La Proporciones del Hombre de Vitruvio

“Vitrubio el arquitecto, dice en su obra sobre arquitectura que la naturaleza distribuye las medidas del cuerpo humano como sigue: que 4 dedos hacen 1 palma, y 4 palmas hacen 1 pie, 6 palmas hacen 1 codo, 4 codos hacen la altura del hombre. Y 4 codos hacen 1 paso, y que 24 palmas hacen un hombre; y estas medidas son las que él usaba en sus edilicios. Si separas la piernas lo suficiente como para que tu altura disminuya 1/14 y estiras y subes los hombros hasta que los dedos  estén al nivel del borde superior de tu cabeza, has de saber que el centro geométrico de tus extremidades separadas estará situado en tu ombligo y que el espacio entre las piernas será un triángulo equilátero. La longitud de los brazos extendidos de un hombre es igual a su altura. Desde el nacimiento del pelo hasta la punta de la barbilla es la décima parte de la altura de un hombre; desde la punta de la barbilla a la parte superior de la cabeza es un octavo de su estatura; desde la parte superior del pecho al extremo de su cabeza será un sexto de un hombre. Desde la parte superior del pecho al nacimiento del pelo será la séptima parte del hombre completo. Desde los pezones a la parte de arriba de la cabeza será la cuarta parte del hombre. La anchura mayor de los hombros contiene en sí misma la cuarta parte de un hombre. Desde el codo a la punta de la mano será la quinta parte del hombre; y desde el codo al ángulo de la axila será la octava parte del hombre. La mano completa será la décima parte del hombre; el comienzo de los genitales marca la mitad del hombre. El pie es la séptima parte del hombre. Desde la planta del pie hasta debajo de la rodilla será la cuarta parte del hombre. Desde debajo de la rodilla al comienzo de los genitales será la cuarta parte del hombre. La distancia desde la parte inferior de la barbilla a la nariz y desde el nacimiento del pelo a las cejas es, en cada caso, la misma, y, como la oreja, una tercera parte del rostro». 

La anterior es la traducción completa del texto que acompaña al Hombre de Vitruvio de Leonardo da Vinci. En realidad es una traducción de las palabras de Vitrubio pues  el dibujo de Leonardo fue originalmente una ilustración para un libro sobre las obras de Vitrubio. El Hombre de Vitruvio es probablemente una de las imágenes más famosas  y reconocibles de Leonardo. (En El Código Da Vinci  es también la obra de Da Vinci favorita de Sophie Neveu y es asimismo la postura en la que su abuelo. Jacques Sauniére. colocó su cuerpo antes de morir). 

Carteles con la imagen del hombre con dos pares de brazos extendidos y dos pares de piernas también extendidas han adornado muchas paredes durante al menos un par de generaciones. Vitruvio fue un escritor, ingeniero y arquitecto romano de finales del siglo 1 a. de C. y principios del siglo 1 de nuestra era. Su único libro existente, De Architectura, contiene diez enormes capítulos enciclopédicos en los cuales trata distintos aspectos de la planificación, ingeniería y arquitectura de la ciudad romana, pero también una sección acerca de las proporciones humanas.

Su redescubrimiento y su renovado auge durante el Renacimiento alimentaron el crecimiento del clasicismo durante aquel periodo, e incluso en los posteriores.

La composición del Hombre de Vitruvio, tal y como fue ilustrada por Leonardo da Vinci, se basa por entero en el tratado del propio Vitruvio citado anteriormente sobre las dimensiones del cuerpo humano, que ha probado ser en buena parte conecto. El énfasis se pone, al construir la composición, en la racionalización de la geometría, por medio de la aplicación de números enteros pequeños.

 El hombre de Vitrubio es un claro ejemplo del enfoque globalizador de Leonardo que se desarrolló muy rápidamente durante la segunda mitad de la década de 1480. Trataba de vincular la arquitectura y el cuerpo humano, un aspecto de su interpretación de la naturaleza y del lugar de la humanidad en el "plan global de las cosas". En este dibujo representa las proporciones que podían establecerse en el cuerpo humano (por ejemplo, la proporción áurea). Para Leonardo, el hombre era el modelo del universo y lo más importante era vincular lo que descubría en el interior del cuerpo humano con lo que observaba en la naturaleza.

                   LA DIVINA PROPORCIÓN              

Durante los últimos siglos, creció el mito de que los antiguos griegos estaban sujetos a una proporción numérica específica, esencial para sus ideales de belleza y geometría. Dicha proporción es conocida con los nombres de razón áurea ó divina proporción. Aunque recientes investigaciones revelan que no hay ninguna prueba que conecte esta proporción con la estética griega, esta sigue manteniendo un cierto atractivo como modelo de belleza.

Matemáticamente nace de plantear la siguiente proporcionalidad entre dos segmentos y que dice así: "Buscar dos segmentos tales que el cociente entre el segmento mayor y el menor sea igual al cociente que resulta entre la suma de los dos segmentos y el mayor"

Sean los segmentos:
A: el mayor y B el menor, entoces planteando la ecuación es:

A/B =(A+B)/A

Cuando se resuelve se llega a una ecuación de 2do. grado que para obtener la solución hay que aplicar la resolvente cuadrática.

El valor numérico de esta razón, que se simboliza normalmente con la letra griega "fi" es:

     LA SECCIÓN ÁUREA    

Los griegos de la antigüedad clásica creían que la proporción conducía a la salud y a la belleza. En su libro Los Elementos (300 a. C.), Euclides demostró la proporción que Platón había denominado «la sección», y que más tarde se conocería como «sección áurea». Ésta constituía la base en la que se fundaba el arte y la arquitectura griegos; el diseño del Partenón de Atenas está basado en esta proporción. En la Edad Media, la sección áurea era considerada de origen divino: se creía que encarnaba la perfección de la creación divina. Los artistas del Renacimiento la empleaban como encarnación de la lógica divina. Jan Vermeer (1632-1675) la usó en Holanda; pero, años después, el interés por ella decreció hasta que, en 1920, Piet Mondrian (1872-1944) estructuró sus pinturas abstractas según las reglas de la sección áurea.  

También conocido como la Divina Proporción, la Media Áurea o la Proporción Áurea, este ratio se encuentra con sorprendente frecuencia en las estructuras naturales así como en el arte y la arquitectura hechos por el hombre, en los que se considera agradable la proporción entre longitud y anchura de aproximadamente 1,618. Sus extrañas propiedades son la causa de que la Sección Áurea haya sido considerada históricamente como divina en sus composiciones e infinita en sus significados. Los antiguos griegos, por ejemplo, creyeron que el entendimiento de la proporción podría ayudar a acercarse a Dios: Dios «estaba» en el número.

Sin duda alguna. es cierto que la armonía se puede expresar mediante cifras, tanto en espacios pictóricos o arquitectónicos, como en el reino de la música o, cómo no, en la naturaleza. La armonía de la Sección Áurea o Divina Proporción se revela de forma natural en muchos lugares. En el cuerpo humano, los ventrículos del corazón recuperan su posición de partida en el punto del ciclo rítmico cardiaco equivalente a la Sección Áurea. El rostro humano incorpora este ratio a sus proporciones.

Si se divide el grado de inclinación de una espiral de ADN o de la concha de un molusco por sus respectivos diámetros, se obtiene la Sección Áurea. Y si se mira la forma en que crecen las hojas de la rama de una planta, se puede ver que cada una crece en un ángulo diferente respecto a la de debajo. El ángulo más común entre hojas sucesivas está directamente relacionado con la Sección Áurea.

En arte y la arquitectura también se han usado con extraordinarios resultados las famosas propiedades armoniosas de a Sección Áurea. 1 las dimensiones  de la Cámara Real de la Gan Pirámide se basan en la Sección Áurea; el arquitecto Le Corhusier diseño su sistema Modulor basándose en la utilización de  la proporción áurea, el pintor Mondrian basó la mayoría de sus obras en la Sección Áurea: Leonardo la incluyó en muchas de sus pinturas y Claude Dehussy se sirvió de sus propiedades en la música. La Sección Áurea también surge en algunos lugares inverosímiles: los televisores de pantalla  ancha, las postales, las tarjetas de crédito y las fotografías se ajustan por lo común a sus proporciones. Y se han llevado a cabo muchos experimentos para probar que las proporciones de los rostros de las top models se adecuan más estrechamente a la Sección Áurea que las del resto de la población. lo cual supuestamente explica por qué las encontramos bellas.

Luca Pacioli, un amigo de Leonardo da Vinci al que conoció mientras trabajaba en la corte de Ludovico Sforza, duque de Milán, escribió un tratado crucial sobre la Sección Áurea, titulado De divina proportione. En este libro, Pacioli intenta explicar el significado de la Divina Proporción de una forma lógica y científica, aunque lo que él creía era que su esquiva cualidad reflejaba el misterio de Dios. Esta y otras obras de Pacioli parece que influyeron profundamente a Leonardo, y ambos se convirtieron en amigos inquebrantables, trabajando incluso juntos sobre problemas matemáticos. El uso de la Sección Áurea es evidente en las obras principales de Leonardo, quien mostró durante mucho tiempo un gran interés por las matemáticas del arte y de la naturaleza. Como el brillante Pitágoras antes que él, Leonardo hizo un estudio en profundidad de la figura humana, demostrando que todas las partes fundamentales guardaban relación con la Sección Áurea. Se ha dicho que la gran pintura inacabada de Leonardo, San Jerónimo, que muestra al santo con un león a sus pies, fue pintada en un intencionado estilo para asegurarse de que un rectángulo dorado (véase entrada) encajara perfectamente alrededor de la figura central. Dada la afición de Leonardo por la «geometría recreativa», esto parece una suposición razonable También el rostro de la Mona Lisa encierra un rectángulo dorado pertecto.

Después de Leonardo, artistas como Ralaei y Miguel ángel hicieron un eran uso de la Sección Áurea para construir sus obras. La impresionante escultura de Miguel Ángel El David se ajusta en varios sentidos a la Sección Áurea, desde la situación del ombligo con respecto a la altura, hasta la colocación de las articulaciones de los dedos.

Los constructores de las iglesias medievales y góticas y de las catedrales europeas también erigieron estas asombrosas estructuras para adaptarse a la Sección Aurea. En este sentido, Dios realmente estaba en los números.

        LA SECUENCIA DE FIBONACCI     

En el suelo del lugar donde se encuentra el cuerpo de Jacques Sauniére al comienzo del libro hay escritos algunos números. Sophie, su nieta, reconoce la secuencia numérica y la interpreta como una señal de su abuelo, aunque lleva su tiempo que emerja su completa significación. Una vez que ella tiene la llave de la caja de depósitos del banco y comprende que necesita un número de cuenta para tener acceso a ella, las cifras se ordenan ascendentemente para darle la solución.

La secuencia de Fibonacci es una secuencia infinita de número que comienza por: 1, 1, 2, 3, 5,8,13..., en la que cada uno de ellos es la suma de los dos anteriores.

Así: 2=1+1, 3=2+1, 5=3+2, 13=8+5 . Para cualquier valor mayor que 3 contenido en la secuencia, la proporción entre cualesquiera dos números consecutivos es 1,618, o Sección Áurea.

La secuencia de Fibonacci se puede encontrar en la naturaleza, en la que la flor del girasol, por ejemplo, tiene veintiuna espirales que van en una dirección y treinta y cuatro que van en la otra; ambos son números consecutivos de Fibonacci. La parte externa de una piña piñonera tiene espirales que van en sentido de las manecillas del reloj y otras que lo hacen en sentido contrario, y la proporción entre el número de unas y otras espirales tiene valores secuenciales de Fibonacci. En las elegantes curvas de una concha de nautilus, cada nueva circunvolución completa cumplirá una proporción de 1: 1,618, si se compara con la distancia desde el centro de la espiral precedente.

Leonardo Fihonacci nació en Pisa. Italia, en 1170. Creció y fue educado en Bugia, norte de África (hoy llamada Bejaia, en Argelia), desde donde regresó a Pisa alrededor del año 1200. Fibonacci fue sin duda influido y posiblemente enseñado por matemáticos árabes durante este su periodo más formativo. Escribió muchos textos matemáticos e hizo algunos descubrimientos matemáticos significativos, lo que ayudó a que sus trabajos fueran muy populares en Italia y a que le prestara atención el Sacro Emperador Romano del momento  Federico II. quien lo invito a su corte de Pisa. Fibonacci murió en 1250.


       En este sitio: Fórmula Matemática de la Belleza Universal      

Bajar Un Libro


   VOLVER    ARRIBA                             * SIGUE BIOGRAFÍA DE LEONARDO *    

Cuadrados Mágicos La Mujer Mas Bella del Mundo Origen del Número Cero! La Divina Proporción

Biografías - Todo Argentina - Maravillas del Mundo - Historia Universal - Juegos Pasatiempo

Sonico Meneame

Si te gusta esta página, votá!

(+) Tips o Sugerencias Sedna

 Autor del Diseño, Mantenimiento y Armado Usando Las Fuentes Consultadas