MATEMÁTICO GRIEGO: ARQUÍMEDES
Obra Científica, Vida y Anécdotas

Thales de Mileto

ARQUÍMEDES :BIOGRAFÍA DEL GRAN MATEMÁTICO GRIEGO

Pitágoras

Euclides

 

 

 

 

Ampliar Sobre Arquímedes

El Principio de Arquímedes

Grandes Ideas: Arquímedes

Curiosidades de la Historia


ARQUÍMEDES (287 a.C-21 2 a.C)

Nació y murió en Siracusa. Fue sin duda el mayor matemático y físico de la antigüedad. Arquímedes, aristócrata en cuerpo y alma, era hijo del astrónomo Feidias. Se dice que era pariente de Hierón II. De todos modos se hallaba en excelentes relaciones con Hierón II y su hijo Gelón, quienes tenían por él gran admiración.

Aprendió probablemente de su padre un sin fin de disciplinas matemáticas, para proseguir sus estudios en la escuela de Alejandría, Egipto. En Egipto hizo su primer gran invento, la coclea, una especie de máquina que servía para elevar Las aguas y regar ciertas regiones del Nilo, donde no Llegaba el agua durante

Las inundaciones. De vuelta a Siracusa, alternó inventos mecánicos con estudios de mecánica teórica y altas matemáticas. Entre sus inventos cabe destacar numerosas máquinas de guerra, un método para la determinación del peso específico de los cuerpos y un planetario mecánico. Su historia está llena de anécdotas y algunas de sus frases han pasado a la historia: Dame un punto de apoyo y moveré la Tierra, que resume el principio de la palanca, formulado por Arquímedes.

Según la tradición, Arquímedes es el tipo perfecto del gran matemático que el pueblo Concibe. Se olvidaba de comer cuando estaba ensimismado en La Matemática. Su falta de atención por el vestido quedó de manifiesto cuando hizo su descubrimiento fundamental de que un cuerpo que flota pierde de peso una cantidad igual a la del líquido que desaloja (principio de Arquímedes) salió del baño, en el cual había hecho el descubrimiento al observar su propio cuerpo flotante, y corrió por las calles de Siracusa, completamente desnudo, gritando: Eureka,… eureka (lo encontré,… lo encontré). Lo que había encontrado era la primera Ley de la Hidrostática.

Refiere la historia que un orfebre había adulterado el oro de una corona para Hierón II mezclándolo con plata, y el tirano, al sospechar el engaño, había planteado a Arquímedes el problema. Cualquier estudiante sabe cómo se resuelve, mediante un simple experimento, y algunas fáciles cuentas aritméticas, basadas en el peso específico.

Arquímedes fue una especie de águila solitaria. Siendo joven había estudiado breve tiempo en Alejandría Egipto, donde contrajo dos amistades íntimas, Conan, un matemático de talento por quien Arquímedes5 tenía un alto concepto personal e intelectual, y Eratóstenes, también buen matemático. Estos dos, particularmente Conan, parece que fueron los únicos hombres a quienes Arquímedes participó sus pensamientos seguro de ser Comprendido Algunos de sus trabajos más complicados fueron comunicados por cartas a Canon. Más tarde, cuando Canon murió, Arquímede5 mantuvo correspondencia con Dositeo, un discípulo de Conan.

Sus publicaciones son obras cortas, especie de monografías.

De las espirales: genera la espiral, conocida como la espiral de Arquímedes, por movimientos.

Juega Con La Espiral de Arquímedes

Es la curva que describe un punto que se mueve, con velocidad constante, sobre una recta que a su vez gira con velocidad constante. Combina dos movimientos, el circular uniforme de la semirrecta alrededor del origen y el rectilíneo uniforme del punto sobre la semirrecta.

Su ecuación en coordenadas polares es r=a.Þ donde r es la distancia al origen, a una constante y theta (Þ) es el ángulo girado.

Muy sorprendente para los matemáticos, fueron sus resultados sobre la espiral uniforme, recogidos en su libro "Sobre las espirales", en el que entre sus 28 proposiciones varias se refieren a las áreas de las espirales. Resultados tan complejos como estos:

"El área barrida por el radio de la espiral en su primera revolución es la tercera parte del área del círculo cuyo radio es el radio final de esta revolución..."

"El área barrida por el radio en la segunda vuelta es 6 veces el área de la primera vuelta".

"El área barrida en la segunda revolución está en razón 7/12 con el círculo cuyo radio es la posición final del radio vector"

De la esfera y el cilindro: se dedica a La geometría y completa la obra de Euclides. Elabora una geometría del espacio con rigor. Relaciona áreas de distintas figuras. Busca una relación entre las áreas del cilindro y de La esfera.

Arquímedes partió de una semiesfera de radio R y colocó a su lado un cono recto y un cilindro circular recto, ambos con base de radio también R:


 

Cortó las tres figuras con un plano paralelo a la base del cilindro (que quedara a distancia d de la parte superior de las tres figuras) y estudió cómo serían las secciones que este plano crearía en cada una de las figuras:

Volumen cilindro = Volumen semiesfera + Volumen cono

El área lateral del cilindro es igual al área de la esfera inscripta.

Arquímedes estaba tan orgulloso de este descubrimiento que mandó se inscribiera en su tumba: volumen de la esfera es 2/3 del cilindro.

De la cuadratura del círculo: vincula el problema de hallar un cuadrado de área igual área que La de un círculo. Esto significa encontrar un segmento que tenga la longitud de La circunferencia. El problema depende de ir. No se puede hacer con regla y compás por ser ir trascendente, porque no se puede obtener como raíz de una ecuación algebraica. Arquímedes da un procedimiento para determinar ir por sucesiones formadas por perímetros de polígonos regulares inscriptos y circunscriptos en una circunferencia. AL dividir por el diámetro se obtienen sucesiones numéricas y éstas definen ir como elementos de separación. Así fijó el valor de Pi (entre 3 1/7 y 3 10/71.

De la parábola: en este libro plantea un procedimiento semejante al actual de integración para calcular el área de un recinto plano Limitado por un arco de parábola y una recta. Divide La región en triángulos y va calculando sus áreas hasta aproximarse al área buscada.

De las conoides y esferoides: trata las cuádricas de revolución. De Las 5 trata solo 3. El elipsoide haciendo girar una elipse, eL hiperboloide de 2 hojas, haciendo girar una parábola y el paraboloide haciendo girar una parábola.

Arenario: en este trabajo explica la diferencia entre un número finito y un número infinito. Se refiere a la cantidad de granitos de arene que entran en una semilla de amapolas y cuántas de éstas en el globo terráqueo. Como no los puede determinar establece el sistema de octavas:

 

Con este procedimiento pensaba hallar un número para contar los granitos de arena.

Además encontró métodos para hallar las raíces cuadradas aproximadas, lo que muestra que se anticipó a la invención hecha por tos hindúes, respecto a tas fracciones Continuas periódicas En Aritmética sobrepasó extraordinariamente la incapacidad del método no científico griego de simbolizar los números al escribir o incluso escribir grandes números, e inventó un sistema de numeración capaz de tratar números tan grandes como se deseara.

En mecánica estableció algunos de los Postulados fundamenta les, descubrió tas leyes de la palanca, y aplicó sus principios mecánicos para calcular las áreas y centros de gravedad de diversas superficies planas y sólidos de diversas formas. Creó toda la ciencia de la hidrostática, y la aplicó para encontrar las Posiciones de reposo y de equilibrio de cuerpos flotantes de diversos tipos.

A partir del siglo XIII se recuperó su obra en Europa Occidental, pero no fue hasta el XVI cuando los matemáticos volvieron a adquirir la suficiente capacidad para entenderla.

La vida de Arquímedes era tan tranquila como debe ser la de un matemático que ha hecho lo que él hizo. Toda la acción y tragedia de vida quedan coronadas en su muerte. En el año 212 a.C. estalló la segunda Guerra Púnica.

Roma y Cartago estaban en guerra, y Siracusa, la ciudad de Arquímede5 tentadoramente situada cerca del camino de la flota romana. ¿Por qué no sitiarla? Eso hicieron los romanos. Orgulloso de sí mismo, el jefe romano, Marcelo, estaba seguro de una rápida conquista. Considerando su fama, esperaba que los tímidos ciudadanos Pusieran en sus manos la llave de la ciudad. Hierón II no lo hizo así. Estaba bien preparado para la guerra y de una manera que el práctico Marcelo no podía soñar.

Los necios habitantes de Siracusa se entregaban a una fiesta religiosa en honor de Artemisa. La guerra y La religión siempre han dado lugar a un peligroso cocktail; sorprendidos en la fiesta, Marcelo hizo una carnicería.

La primera noticia que tuvo Arquímedes de que la ciudad había sido tomada fue la sombra de un soldado romano que se proyectaba sobre sus dibujos en la arena. Un relato dice que eL soldado, al pisar Los dibujos, dio Lugar a que Arquímedes exclamara excitadamente: No borres mis círculos.

Otros afirman que Arquímedes se negó a obedecer la orden de un soldado, para que le acompañara a presencia de Marcelo, hasta que hubiera resuelto su problema. De todos modos Lo cierto es que el irritado soldado desenvainó su sable y dio muerte al inerme geómetra que a La sazón tenía 70 años. Así murió Arquímedes en Siracusa cuando Los romanos la capturaron en 212 a.C.

DESCRIPCIÓN DEL PRINCIPIO DE ARQUÍMEDES:

Figura Abajo: Un cuerpo sumergido en un líquido pierde una parte de su peso igual al peso del volumen del líquido desalojado. Obsérvese como varia el brazo de la balanza cuando la piedra está sumergida.

PRINCIPIO DE ARQUÍMEDES: Existe en física un importante principio que fue descubierto por Arquímedes, el más grande físico y matemático de la Antigüedad. Dicho principio dice que un cuerpo sumergido en un líquido recibe un empuje hacia arriba igual al peso del líquido desalojado.

Si, por ejemplo, sumergimos un huevo, que puede tener un volumen de 60 centímetros cúbicos, en el agua, recibirá un empuje hacia arriba igual al peso de 60 centímetros cúbicos de agua; es decir, 60 gramos. Y si el huevo pesa 50 gramos, el empuje resultante será de 60 — 50 = 10 gramos, que es suficiente para mantenerlo a flote; el peso específico del huevo es menor que el del agua.

Si en vez de un huevo de gallina se hubiese tratado de otro de igual forma y volumen, pero de plomo, es evidente que se hubiera ido al fondo, ya que el empuje del agua hubiera sido mucho menor que su peso.

En este hecho se basa un modo muy simple para saber si un huevo es o no fresco. El huevo fresco tiene un peso específico ligeramente superior al agua, y por esto se sumerge; el que no es fresco, en el cual ha entrado aire o se han producido gases de descomposición, tiene densidad menor que la del agua, y flota.

Del principio de Arquímedes poseemos numerosísimos e importantes ejemplos y aplicaciones. Las naves, también de hierro, flotan porque su peso total es menor que el peso del volumen de agua que desalojan.

En los submarinos se necesita introducir agua en el momento de la inmersión, a fin de que aumente el peso total del mismo y así supere al del agua desalojada.

Por el mismo motivo, los globos y dirigibles se mantienen en el aire: se llenan de gas (hidrógeno, helio) cuya densidad es menor que la del aire.

Pero hay más todavía. Esto, que sucede para los cuerpos sólidos de forma y volumen bien definidos, ocurre también para las masas de líquidos y gases que presentan en su seno zonas o partes de distintas densidades.

¿Por qué el humo sale y las chimeneas "tiran"? El humo y los gases de la combustión son más calientes y por lo tanto menos densos que el aire circundante; por esto son empujados hacia arriba por el aire frío. Si el humo sale por una chimenea, se puede calcular con exactitud el empuje o presión (depresión, para ser más correctos) al pie de la chimenea midiendo la temperatura del humo y del aire ambiente.

Así también, al verter agua fría en una vasija donde hay agua caliente, el agua vertida "cae" al fondo, quedando situada debajo de la caliente.

Del mismo modo se explican dos importantísimos fenómenos, cuales son los de las corrientes marinas y de los vientos. Se trata de masas fluidas, de agua o aire, puestas en movimiento debido a su diferencia de densidad, respecto a las masas cercanas, cuando son calentadas por la irradiación solar.

Vista la importancia del concepto de peso específico, estudiemos la manera de medirlo.

Biografías - Todo Argentina - Maravillas del Mundo - Historia Universal - Juegos Pasatiempo

Sonico Meneame

Si te gusta esta página, votá!

(+) Tips o Sugerencias Sedna

 Autor del Diseño, Mantenimiento y Armado Usando Las Fuentes Consultadas