LA MATEMÁTICA EN LA EDAD MEDIA
Matemáticos: Fibonacci y Pacioli

DOS MATEMÁTICOS MEDIEVALES: FIBONACCI Y PACIOLI

DOS MATEMÁTICOS NOTABLES de la edad media

 

 

 

 
         
  matematico edad media Fibonacci   matematico edad media Pacioli  
 

Leonardo de Pisa (Fibonacci)
1170-1250

 

Luca Pacioli
1445-1517

 

LA MATEMÁTICA EN LA EDAD MEDIA: En su crepúsculo, el siglo v asiste al dramático fin del Imperio Romano de Occidente. Con la invasión de los bárbaros desciende sobre Europa la milenaria "noche medieval", la larga noche de estancamiento y decadencia de todas las ramas del saber.

Cuando Alejandría sucumbe ante los musulmanes y el emperador JUSTINIANO cierra, en el año 529, las antaño famosas escuelas de Atenas, sólo Constantinopla custodia la preciosa herencia de la cultura antigua. Hasta la toma de la ciudad por los turcos en 1453, y la consiguiente difusión por Occidente de manuscritos y conocimientos griegos, el mundo queda sumido en densas sombras, cuya penumbra sólo es surcada por la luz que enciende un pueblo extraño a Europa: los árabes.

Las tres centurias que siguen al fin del Imperio de Occidente y que preceden a la aparición de los árabes en escena, son la época más estéril en la Historia de las Ciencias. Sobre la ruina de las instituciones sociales y políticas del mundo romano se eleva poderosa la nueva organización de la Iglesia; subordinados a sus finalidades, todos los esfuerzos intelectuales convergen en su seno.

En el concepto de los padres de la Iglesia -moralistas eminentes, pero ignorantes en la ciencia como es hoy un niño de diez años- el mundo físico es el escabel de Dios y sus fenómenos parecen menos dignos de estudio que los problemas teológicos, únicos capaces de servir a la salvación de las almas.

El universo para el hombre medieval sólo tiene una extensión de algunos miles de kilómetros; su pasado abarca algunos millares de años y su fin, una amenaza para los pecadores, está muy cercano. En este pequeño mundo, destinado a pronta e inevitable destrucción, ¿qué sentido, qué utilidad, podrían tener las ciencias? La astronomía se reducía a reglas para establecer el calendario de la Iglesia, a algunos preceptos indispensables para los navegantes, o aun a una quimérica doctrina acerca de las influencias astrales sobre los destinos humanos.

Las matemáticas quedan, en el Occidente cristiano, dentro de los límites de la aritmética elemental, seguidas de especulaciones neoplatónicas sobre las propiedades místicas de los números. Algunas definiciones de triángulos, cuadriláteros, círculos y sólidos constituyen todo el edificio, antaño tan soberbio, de la geometría. La química se identifica con la búsqueda del oro alquímico o de una panacea universal.

La Matemática en el Medioevo europeo
En el continente europeo, la Matemática no tiene un origen tan antiguo como en muchos países del Lejano y Medio Oriente, alcanzando sólo éxitos notorios en la época del medioevo desarrollado y especialmente en el Renacimiento.

En la Edad Media se puede observar cierto oscurantismo cultural, sin duda debido a los acontecimientos bélicos y sociales de la época. Sólo en algunos monasterios religiosos se escribieron algunos manuscritos, testimonios de un primer despertar cultural.

La Matemática interesa en Europa por el contacto con los árabes. Hasta esa época se conocía la Geometría de los griegos a la que no se le había agregado casi nada, el sistema de numeración decimal, posicional y con cero de los hindúes y generalizado por los árabes, el Álgebra y la Trigonometría de los árabes. Los números eran los naturales, racionales, irracionales, todos positivos. Los negativos eran soluciones falsas.

A partir de los siglos XII y XIII, principalmente por el contacto con los árabes, los occidentales comienzan a dar fundamentos, ya visualizados hasta entonces de la Matemática.

El punto de arranque de la Matemática en Europa fue el desarrollo de los Centros de Enseñanza, París en 1200, Oxford en 1214, etc.

Con anterioridad, tan solo algunos monjes se dedicaron a estudiar las obras de Ciencias Naturales y Matemática de los antiguos. Uno de los primeros centros de enseñanza fue organizado en Reimsgs por Gerberto de Aurillác (940-1003) donde fundamentalmente se hacen traducciones. Cerberto fue profesor durante 10 años en Reims, luego obispo de esa ciudad y de la de Raveno, y al final de su vida se convirtió en el Papa Silvestre II. Conoció y propagó la notación decimal que aprendió en España durante su estancia en un convento catalán en 967.

Esto ocurre en el siglo X. Fue posiblemente el primero en Europa que enseñó el uso de los numerales hindú-arábigos. Sin embargo hubo que esperar a que los musulmanes rompieran la barrera lingüística, hacia el siglo XII, para que surgiera una oleada de traducciones que pusieran en marcha la maquinaria matemática. Esta época fue caracterizada por las traducciones.

Se comienza a traducir todo. Las obras griegas ya habían sido traducidas al árabe. Hay que traducir todo del árabe, se traducen en España. Las traducciones se hacen al latín pasando por el idioma local. Por ejemplo al español, y de ahí al latín. El trabajo de los traductores fue sensacional y se da entre los siglos XI y XIII.

Uno de los lugares donde esto ocurre es en la Escuela de traductores de Toledo100, durante el reinado de Alfonso X el Sabio. Entre los traductores de Toledo se destaca Gerardo de Cremonam (1114-1187), que tradujo del árabe más de 80 obras.

Sus trabajos de investigación y traducción permitieron que obras fundamentales de la antigua cultura griega fueran rescatadas del olvido y transmitidas a la Europa medieval a través de España.

A partir de estas versiones, y gracias a las mismas, España transmitió a Europa todos aquellos saberes que cubrían campos como la Geografía, la Astronomía, la Cartografía, la Filosofía, la Teología, la Medicina, la Aritmética, la Astrología o la Botánica, entre otros. Esta escuela fue el origen y la base del renacer científico y filosófico drías famosas escuelas de Chartresm y, más tarde, de la Sorbona.

Durante el siglo XIII surgió la figura de Leonardo de Pisa (1180 1250) más conocido como Fibonacci. Otro contemporáneo, aunque no tan excepcionalmente dotado fue Jordano Nemorarius (1225-1260).

quien debemos la primera formulación correcta del problema del plano inclinado. El profesor parisino Nicole Oresmes (1323-1382) generalizó el concepto de potencia, introduciendo los exponentes fraccionarios, las reglas de realización de las operaciones con ellos y una simbología especial, anticipándose de hecho a la idea de logaritmo.

Cuando se traducen los Elementos de Euclides, la fundamentación axiomática lleva a pensar que lo que él hizo para la Geometría, se podría hacer con los números, surge la idea de fundamentar axiomáticamente a los números naturales.

Ya en el siglo XV, época de las grandes navegaciones, la Trigonometría fue separada de la Astronomía, alzándose como ciencia independiente de la mano de Müller (conocido como Regiomontano) (1436-1474).


Anécdotas Matemáticas

Grandes Matemáticos

Matemáticos y Físicos

Un Problema Muy Difícil

Científicos Griegos

Biografías - Todo Argentina - Maravillas del Mundo - Historia Universal - Juegos Pasatiempo

Sonico Meneame

Si te gusta esta página, votá!

(+) Tips o Sugerencias Sedna

 Autor del Diseño, Mantenimiento y Armado Usando Las Fuentes Consultadas