VIDAS DE CIENTÍFICOS FAMOSOS
Biografía de Grandes Hombres de Ciencia

POR AMOR A LAS CIENCIAS

HISTORIAS Y BIOGRAFÍAS DE DESTACADOS CIENTÍFICOS  E INTELECTUALES DE LA HISTORIA

>Inicio >Menú de Ciencias

Vidas de Cientificos Grandes Hombres de Ciencia Biografias Historias

 

 

 


Matemáticos Medievales

Un Problema Muy Difícil

Científicos Argentinos

Vesica Picsis

La Divina Proporción Fórmula de Euler

Anécdotas Matemáticas


  grandes ideas de la ciencia  
 

Grandes Ideas de la Ciencia

 
  personalidades del siglo xx  
  Personalidades del Siglo XX  
  mujeres cientificas  
  Diez Mujeres Científicas  
  cientificos olvidados  
  Grandes Científicos Olvidados  
  grandes iconoclatas  
  Grandes Iconoclastas  
  mujeres astronomas  
  Mujeres Astrónomas  
  mujeres matematicas  
  Mujeres Matemáticas  
  grandes observadores del universo  
  Observadores del Universo  
  victimas de sus investigaciones  
  Víctimas de sus Propias Investigaciones  
  matematicos y fisicos  
  Grandes Matemáticos-Físicos  
  hombres mas influyentes  
  Las Personas Mas Influyentes del Siglo  
  las teorias mas importantes  
  Las Más Destacadas Teorías Científicas de la Historia  
  Ver También: 10-10-10 Todo de a 10...    Vidas Para Reflexionar!  

Los Científicos Investigan
1-1 La observación conduce a la investigación.
En la Universidad de Wurzburgo en Baviera, había un profesor de Física llamado Wilhelm Roentgen (figura abajo), que en la tarde del 8 de noviembre de 1895, se encontraba en su laboratorio haciendo experimentos con un tubo de vacío.

Los tubos de vacío de esa época eran más sencillos que los que se utilizan actualmente en los aparatos de radio. Dentro de una ampolla de vidrio había dos pequeñas placas metálicas separadas varios centímetros; un alambre partía de cada placa atravesando el vidrio del tubo. Cuando las terminales de estos alambres se conectaban a una fuente de electricidad, una carga eléctrica cruzaba el vacío del tubo desde una placa a la otra. Ninguna luz era visible dentro de la ampolla, pero el vidrio adquiría brillantez cerca de una de las placas.

Mientras trabajaba ese día, Roentgen miró casualmente un estante colocado en el otro extremo del laboratorio, notando que una sustancia química contenida en uno de los frascos brillaba débilmente. Años después, cuando Roentgen era famoso, alguien le preguntó qué había pensado al observar aquel brillo en el frasco; después de meditar, contestó: “No pensé, investigué”.

La investigación indicó que el frasco contenía un producto químico con el difícil nombre de platinocianuro de bario. Este es uno de los compuestos que brillan siempre cuando un rayo luminoso incide directamente sobre ellos; dichos compuestos se llaman fluorescentes.
El frasco en el laboratorio de Roentgen no se encontraba expuesto a la luz directa, así que el brillo estaba aparentemente relacionado con la corriente eléctrica dentro del tubo, ya que cesaba poco después de cortar la corriente. Como Roentgen pronto aprendió con experimentos, la corriente en el tubo hacía relucir el compuesto químico, aun cuando el tubo estuviese cubierto completamente con un cartón negro. Parecía que había algo, similar a la luz, pero sin efecto sobre el ojo, que era producido cuando la corriente atravesaba el tubo y que podía cruzar el cartón negro.

1-2 De la investigación surgen preguntas.
El “algo” descubierto por Roentgen (el agente como lo llamó al principio) podía penetrar a través del vidrio, el cartón negro y el aire. ¿Atravesará también otras substancias? ¿Cuáles de éstas serán transparentes y cuáles opacas? ¿Podrá medirse el grado de transparencia? ¿Qué relación habrá entre la transparencia y las propiedades químicas de la substancia?

El agente actuaba como la luz en un aspecto: hacía brillar un compuesto fluorescente. ¿Actuará también como la luz en otros aspectos? Por ejemplo, ¿se propagará en línea recta?, ¿podrá utilizarse para tomar fotografías?

1-3 Una búsqueda para encontrar las respuestas exige ingenio y experimentación.
Durante las pocas semanas siguientes, Roentgen contestó tantas de estas preguntas como le permitió el tiempo. No intentó encontrar respuestas completas. Sus experimentos eran por completo preliminares. Exploraba buscando respuestas provisionales que sirvieran de guía para un estudio posterior más completo y sistemático. Necesitaba hacer comparaciones y quería idear el modo de hacer medidas.

Su primer paso fue construir una pantalla de papel pintada con una solución de platino-cianuro de bario y colocarla en varias posiciones cerca del tubo de vacío. Siempre que la corriente atravesaba la ampolla la pantalla brillaba, con mayor intensidad cuando la superficie pintada estaba vuelta hacia la región fluorescente del vidrio. Parecía como si los rayos salieran de esa región y alcanzaran la pantalla. Como Roentgen suponía que el agente eran rayos de una naturaleza desconocida les puso el nombre de rayos X-

El segundo paso fue colocar varios objetos entre el tubo y la pantalla y observar el brillo de ésta al pasar la corriente por aquél. Más tarde, Roentgen tuvo gran esmero en medir el espesor y otras propiedades de los objetos usados, pero en su trabajo preliminar estaba demasiado impaciente para llevarlo a cabo.

En lugar de ello, escogió varios objetos que le rodeaban en el laboratorio para colocarlos delante de la pantalla: un libro de mil páginas, un doble paquete de cartas de baraja, un grueso trozo de madera, un pedazo de ebonita . . . , todo resultó transparente a los rayos X. Pero cuando Roentgen puso su mano entre el tubo y la pantalla vio “. . . la sombra más obscura de los huesos destacándose dentro de la sombra, sólo ligeramente menos obscura, de la mano”. La carne, por tanto, no era completamente transparente a los rayos X y los huesos lo eran aún menos. Por entonces, Roentgen había dejado de observar simplemente si los rayos X atravesaban un material; comenzaba a medir el grado en que penetraban.

Roentgen también usó técnicas fotográficas en su investigación. Sin embargo, no empleóuna cámara, sino sólo placas sensibilizadas (placas de vidrio cubiertas con una emulsión fotográfica eran las usadas en los albores de la fotografía, en lugar de películas como ahora). De nuevo, Roentgen utilizó los objetos que tenía a su alcance. Colocó primero una placa sensible dentro de una caja de madera, después puso sobre la caja la llave de una puerta e hizo pasar una corriente por el tubo de vacío. Cuando reveló la placa, encontró en ella la imagen de la llave. Después, puso su monedero en lugar de la llave y obtuvo la impresión de las monedas que estaban dentro. A continuación, fotografió los huesos de su mano.

1-4 El informe de los resultados estimula el interés ulterior.
Durante todas estas investigaciones, el Profesor Roentgen tomó notas de sus observaciones.

No comprendía entonces todo lo que había visto y no quería que sólo por ese motivo se perdiera alguna observación. Además, había demasiados detalles para recordar. Como hacen muchos otros científicos, una gran parte de lo anotado por Roentgen trataba de descripciones y opiniones sobre lo que observaba. Ciertamente, eran abundantes sus comentarios en aquel tiempo.

Lo que realizó el Profesor Roentgen durante aquellas semanas de noviembre de 1895, se conoce ahora, en parte, debido a que escribió cuidadosas notas de sus experimentos y observaciones. Pero esto no era suficiente. Roentgen también deseaba compartir su entusiasmo y sus hallazgos iniciales con otras personas interesadas, que podrían unirse a sus investigaciones para explicar estos nuevos fenómenos. En consecuencia, redactó sus notas de laboratorio con el fin de preparar un informe.

Este informe lo leyó en la sesión de diciembre de la sociedad científica local, la Asociación Físico-Médica de Wurzburgo. Como indica su nombre, la Asociación incluía físicos y médicos.

La disertación del Profesor Roentgen tuvo gran significado para ambos grupos. Los físicos vieron el descubrimiento de los rayos X como un paso hacia un mejor conocimiento del comportamiento de la energía y de la estructura de la materia. Los médicos, como un acontecimiento de gran valor práctico para su profesión, especialmente en cirugía.

Las noticias de la animada reunión de Wurzburgo se esparcieron rápidamente, pero no todos se impresionaron. Hubo gente, como siempre la hay, que menospreció la importancia del trabajo de Roentgen (¡como poco científico por haber usado barajas!). Otras personas, aunque interesadas en el nuevo campo de estudio, estaban tan absorbidas en sus propios problemas científicos, que no podían apreciar toda su importancia, ni dedicarle algún tiempo. Aún así, cuando el trabajo del Profesor Roentgen apareció impreso, había científicos en todo el mundo ansiosos de repetir los experimentos y llevarlos más lejos.

En Francia, en el lapso de un año, el trabajo precursor de Roentgen condujo al descubrimiento de la radiactividad. Con esta base, los estudios hechos por científicos de muchas naciones, llevaron, después de cincuenta años, a la liberación de la energía nuclear.

Fuente Consultada: Física, Fundamentos y Fronteras – Stollberg/Hill

Biografías - Todo Argentina - Maravillas del Mundo - Historia Universal - Juegos Pasatiempo

Sonico Meneame

Si te gusta esta página, votá!

(+) Tips o Sugerencias Sedna

 Autor del Diseño, Mantenimiento y Armado Usando Las Fuentes Consultadas